1 Binomial distribution

 $X \sim (n, p)$

1.1 Conditions for binomial distribution

- n repeated trials
- independent trials
- two outcomes
- P is a constant

2 Poisson distribution

2.1 Conditions

- single in space or time
- independent of each other
- at a constant rate

3 PDF and CDF

PDF is f(x), CDF is F(x)

3.1 mode

Mode is the x value at which the PDF function has the greatest probability.

3.2 mean

Use formulae provided for PDF.

3.3 median

F(median) = 0.5

4 Skewness

symmetrical	mode = median = mean
positive skew	mode < median < mean
negative skew	mode > median > mean

5 Approximation

5.1 Binomial to Poisson

 $X \sim B(n, p) \longrightarrow X \sim Po(np)$

5.2 Binomial to Normal

 $X \sim B(n,p) \longrightarrow X \sim N(np,npq)$

5.2.1 Conditions

 $\begin{cases} np > 5\\ nq > 5 \end{cases}$

5.3 Poisson to Normal

 $X \sim Po(\lambda) \longrightarrow X \sim N(\lambda, \lambda)$

5.3.1 Conditions

 $\lambda > 10$

6 Continuous uniform distribution

 $X \sim U[a, b]$

6.1 CDF for U

 $F(x) = \begin{cases} a, & x < a, \\ \frac{x-a}{b-a}, & a \le x \le b, \\ 1, & x > b. \end{cases}$

7 Sampling

7.1 Terms

7.1.1 population

a collection of individual items.

7.1.2 sample

a selection of individual members or items from a population.

7.1.3 finite population

each individual member can be given a number.

7.1.4 infinite population

impossible to number each member.

7.1.5 sampling unit

an individual member of a population.

7.1.6 sampling frame

a list of sampling units used in practice to represent a population.

7.1.7 statistic

a quantity calculated solely from the observations in a sample.

7.1.8 sampling distribution

defined by giving all possible values of the statistic and the probability of each occurring.

8 Hypothesis testing

8.1 Terms

8.1.1 hypothesis test

Hypothesis test is a mathematical procedure to examine value of a population parameter proposed by the null hypothesis H_0 , compared to the alternative hypothesis H_1 .

8.1.2 test statistic

In a hypothesis test the evidence comes from a sample which is summarised in the form of a test statistic.

8.1.3 critical region

The range of values of a test statistic that would lead you to reject H_0 .

8.1.4 critical value

The boundary value of a critical region.

8.1.5 one-tailed test

Looks either for an increase or for a decrease in a parameter, and has a single critical value.

8.1.6 Two-tailed test

Looks for both an increase and a decrease in a parameter, and has two critical values.

8.1.7 actual significance level

The probability of rejecting H_0 .